This paper describes the sputter deposition and characterization of nickel titanium (NiTi) shape memory alloy thin film onto the surface of an optical fiber Bragg sensor. The NiTi coating uniformity, crystallinity and transformation temperatures are measured using scanning electron microsocopy, x-ray diffraction and differential scanning calorimetry respectively. The strain in the optical fiber is measured using centroid calculation of wavelength shifts. Results show distinct and abrupt changes in the optical fiber signal with the four related transformation temperatures represented by the austenite-martensite forward and reverse phase transformations. These tests demonstrate a coupling present between optical energy and thermal energy, i.e. a modified multiferroic material.

This content is only available via PDF.
You do not currently have access to this content.