Analytical modeling of Carbon Nanotube (CNT) composite based on the nonlocal continuum theory is investigated. This approach accounts for nonlocal stress-strain relationships, that is, stress at any point in a structure is a function of strain in the entire structure. Finite element analysis of a representative volume element (RVE) of CNT composite is used to evaluate unknown constant in the nonlocal theory based solution. Stress distributions are obtained from finite element method (FEM), nonlocal theory, and standard (local) elasticity. Nonlocal theory and FEM stress distributions yield the same total force and first moment, whereas standard elasticity gives less accurate results.
Volume Subject Area:
Active Materials, Mechanics and Behavior
This content is only available via PDF.
Copyright © 2008
by ASME
You do not currently have access to this content.