Ionic polymer transducers (IPT) are devices that display electromechanical transduction and have been applied extensively both as actuators and sensors. This study employs novel, highly-branched sulfonated polysulfones to investigate the contribution of polymer topology to electromechanical transduction. We assess two methods for ionic liquid uptake in the central ionomeric membrane. The effects of casting membranes in the presence of ionic liquid and swelling cast membranes in ionic liquid on film stability and ionic conductivity are examined. Casting in the presence of ionic liquid appears to cause macrophase separation of the ionic liquid from the polymer, causing limited charge transport. Overall, swelling appears to be a more stable method and achieves higher conductivity at lower uptake levels.

This content is only available via PDF.
You do not currently have access to this content.