The mechanical behavior of the cornea is mainly governed by the microstructure and composition of the stroma. The stroma is a highly ordered extracellular matrix and constitutes about 90% of the corneal thickness. From the mechanics point of view, the corneal stroma can be considered as a polyelectrolyte gel which is composed of collagen fibrils embedded in an aqueous matrix. The collagen fibrils compose about 70% of cornea’s dry mass and are arranged in a regular lattice structure [2]. Previous studies have shown that while the collagen fibrils are primarily located parallel to the surface, they are not distributed uniformly in all directions and their preferred orientation is not same in different species. For example, collagen fibrils are almost equally distributed in the nasal-temporal and inferior-superior directions in healthy human corneas [4] and they are mainly aligned in the inferior-superior direction in bovine corneas[2]. The differences in the orientations of the collagen fibrils have seen to have important implications on the mechanical properties of the cornea. In addition to this observation, the relative distance between the collagen fibrils is expected to play a role in defining the mechanics of the tissue. It is well-documented that the proteoglycans bind collagen fibrils at regular sites and control their relative position. The main proteoglycan in the corneal stroma is decorin. Decorin is the simplest small leucine-rich proteoglycan with a single glycosaminoglycan side chain. Chondroitin sulfate, dermatan sulfate, and keratan sulfate are among the prevalent glycosaminoglycans found in the cornea. Under physiological conditions, these linear carbohydrate polymers are ionized and carry negative charges. Therefore, a hydrated gel is formed in the empty space between collagen fibrils by attracting water. It is known that the interaction of these negatively charged glycosaminoglycans with themselves and with the free ions contribute to the corneal swelling pressure and subsequently to its compressive stiffness. Nevertheless, their possible influence on the corneal tensile properties is yet to be determined. In this work, we experimentally characterized the tensile properties of the bovine corneal stroma in different bathing solutions. Furthermore, a quasi-linear viscoelastic (QLV) model was used to examine the effect of bathing fluids and corneal hydration on mechanical parameter of the cornea.
- Bioengineering Division
Hydration Effects on Tensile Properties of the Corneal Stroma
Rahimi, A, & Hatami-Marbini, H. "Hydration Effects on Tensile Properties of the Corneal Stroma." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT61A011. ASME. https://doi.org/10.1115/SBC2013-14788
Download citation file: