Articular cartilage (AC) metabolism and mechanical properties are regulated by in vitro culture with transforming growth factor–beta 1 (TGF-β1) and insulin-like growth factor–1 (IGF-1) [1]. In general, TGF-β1 maintains tissue size accompanied by a maintenance or increase in tensile and compressive moduli and a maintenance or decrease of compressive Poisson’s ratios while IGF-1 produces significant tissue expansion at the expense of reduced tensile and compressive moduli and increased compressive Poisson’s ratios [1,2]. The goal of this study was to integrate experimental data including AC mechanical properties, biochemical contents including overall collagen (COL) volume fraction, and micro structural measures of COL fiber distribution with a continuum mixture model to predict how COL fiber modulus changes in vitro with TGF-β1 and IGF-1 treatment.

This content is only available via PDF.
You do not currently have access to this content.