Predicting thermal responses of the human body accurately during different exercise conditions is of increasing importance. Computing changes in the core body temperature (T c) during exercise require detailed modeling of both the body tissue temperature and the time-dependent blood temperature. Predicting changes in T c is challenging because the model needs to respond effectively to the changes in perfusion or sweating. Our study was to demonstrate the ability of a recently developed whole body heat transfer model. It simulates the tissue-blood interaction to predict the thermal response of the human body under different exercise intensities. The cases simulated were of a human being walking on a treadmill at 0.9, 1.2 and 1.8 m/s for 30 minutes. It was shown that T c was effectively regulated within 0.17 °C of the steady state value of 37.23 °C for the three cases by means of adjusting the cardiac output; varying between 15 to 25 liters per minute.
- Bioengineering Division
Influence of Exercise Condition on Tissue Blood Temperature Using Whole Body Model
Zachariah, SA, Paul, AK, Banerjee, RK, & Zhu, L. "Influence of Exercise Condition on Tissue Blood Temperature Using Whole Body Model." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT60A003. ASME. https://doi.org/10.1115/SBC2013-14515
Download citation file: