Whole body vibration (WBV) can induce a host of pathologies, including muscle fatigue and neck and low back pain [1,2]. A new model of WBV in the rat has been developed to define relationships between WBV exposures, kinematics, and behavioral sensitivity (i.e. pain) [3]. Although in vivo studies provide valuable associations between biomechanics and physiology, they are not able to fully define the mechanical loading of specific spinal regions and/or the tissues that may undergo injurious loading or deformation. Mathematical models of seated humans and primates have been used to estimate spinal loads and design measures that mitigate them during WBV [4–6]. Although such models provide estimates of relative spinal motions, they have limited utility for relating potentially pathological effects of vibration-induced kinematics and kinetics since those models do not enable simultaneous evaluation of relevant spinal tissues with the potential for injury and pain generation. As such, the goal of this work was to develop and validate a three degree of freedom (3DOF) lumped-parameter model of the prone rat undergoing WBV directed along the long-axis of the spine. The model was constructed with dimensions of a generalized rat and model parameters optimized using kinematics over a range of frequencies. It was validated by comparing predicted and measured transmissibility and further used to predict spinal extension and compression, as well as acceleration, during WBV for frequencies known to produce resonance in the seated human and pain in the rat [3,7].
- Bioengineering Division
A Three Degree of Freedom Lumped Parameter Model of Whole Body Vibration Along the Spine in the Rat
Jaumard, NV, Baig, HA, Guarino, BB, & Winkelstein, BA. "A Three Degree of Freedom Lumped Parameter Model of Whole Body Vibration Along the Spine in the Rat." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT56A001. ASME. https://doi.org/10.1115/SBC2013-14111
Download citation file: