Cell manipulation using dielectrophoresis (DEP) has a great potential for biological applications in diagnostic devices because it has a capability to separate specific cells from mixed heterogeneous solutions, e.g., whole blood, selectively based on intrinsic dielectrophoretic characteristics. Thus, it does not require additional chemical tagging, which can lead to undesirable cell responses (1). Previous DEP cell separation has been run in a discontinuous mode, which may result in more complicated procedures, so that developing continuous flow DEP separation devices in practical sizes for larger throughput clinical applications is an unmet need. In this research, we model numerically a continuous flow dielectrophoresis (CF-DEP) device that was developed with novel angled-electrode design in a MEMs platform, and a pulsing mode was introduced between neighboring electrodes to obtain efficient cell separation. This allows examination of characteristic features of the electrode design and the coupling effect of dielectric and hydraulic forces to particle movement.
- Bioengineering Division
Continuous Flow Cell Separation From Human Peripheral Blood Using Dielectrophoresis and Numerical Analysis Available to Purchase
Kim, S, Jung, Y, Frazier, B, & Giddens, D. "Continuous Flow Cell Separation From Human Peripheral Blood Using Dielectrophoresis and Numerical Analysis." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT53A006. ASME. https://doi.org/10.1115/SBC2013-14446
Download citation file: