Freezing of biomaterials is emerging as one of the key biotechnologies in cell/tissue engineering, medicine and biology. Its applications include — 1) preservation of cell/tissue engineering products, 2) quality control of biospecimens cryopreserved in tissue banks and repositories, and 3) synthesis procedures of biomaterials such as decellularization of native tissues to create acellular (i.e., cell-free) complex three-dimensional extracellular matrices (ECMs). Traditionally, research efforts have focused on determining optimal freeze/thaw (F/T) protocols with chemical additives, so called cryoprotective agents, for a given cell/tissue-type by comparing the outcomes of F/T protocols, which are mainly gauged by cell viability. Although cell viability is the major constituent, it has recently been recognized that other features beyond viability are also critical to the functionality of biomaterials, including the microstructure of the ECM, the status of cell-matrix adhesion, and the cytoskeletal structure and organization [1, 2, 3].

This content is only available via PDF.
You do not currently have access to this content.