In addition to their obvious biological roles in tissue function, cells often play a significant mechanical role through a combination of passive and active behaviors. Phenomenological and continuum modeling approaches to understand tissue biomechanics have included improved constitutive laws that incorporate anisotropy in the extracellular matrix (ECM) and/or cellular phenomenon, e.g, [1]. The lack of microstructural detail in these models, however, limits their ability to explore the respective contributions and interactions between different components within a tissue. In contrast, structural approaches attempt to understand tissue biomechanics by incorporating microstructural details directly into the model, e.g., the tensegrity model [2], cellular solids models [3], or biopolymer models [4]. Research in our group focuses on developing a comprehensive model to predict the mechanical behavior of soft tissues via a multiscale approach, a technique that allows integration of the microstructural details of different components into the modeling framework. A significant gap in our previous models, however, is the absence of cells. The current work represents an improvement of the multiscale model via the addition of cells, and investigates the passive mechanical contribution of cells to overall tissue mechanics.
- Bioengineering Division
A Multiscale Approach to Modeling the Passive Mechanical Contribution of Cells in Tissues
Lai, VK, Hadi, MF, Tranquillo, RT, & Barocas, VH. "A Multiscale Approach to Modeling the Passive Mechanical Contribution of Cells in Tissues." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT49A005. ASME. https://doi.org/10.1115/SBC2013-14533
Download citation file: