Previous investigations in magnetic nanoparticle hyperthermia for cancer treatments have demonstrated that particle size, particle coating, and magnetic field strength and frequency determine its heating generation capacity. However, once the nanoparticles are manufactured, the spatial distribution of the nanostructures dispersed in tissue dominates the spatial temperature elevation during heating. 1–3 Therefore, understanding the distribution of magnetic nanoparticles in tumors is critical to develop theoretical models to predict temperature distribution in tumors during hyperthermia treatment. An accurate description of the nanoparticle distribution and the tumor geometry will greatly enhance the simulation accuracy of the heat transfer process in tumors, which is crucial for generating an optimal temperature distribution that can prevent the occurrence of heating under-dosage in the tumor and overheating in the healthy tissue. Recently studies by our group have demonstrated that the nanoparticle concentration distribution in tumors can be visualized via microCT image due to the density elevation of the presence of magnetic nanoparticles. 4 The problem is the intensive memory requirements to directly import the microCT images to numerical simulation software packages such as COMSOL. Although commercial software packages exist to handle detailed entities inside tumors, they are very expensive to purchase. In addition, having very small entities at the micrometer level inside the tumor geometry may provide challenge to numerical simulation software to accept the generated geometry.

This content is only available via PDF.
You do not currently have access to this content.