Biodegradable stents, which temporarily support a stenotic blood vessel and afterwards fully disappear, have recently gained a lot of interest. They avoid long-term complications associated with conventional stents such as late stent thrombosis and in-stent restenosis. Moreover, degradable stents allow for a restoration of vasomotion and vessel growth which makes them particularly suitable for pediatric applications [1]. Finite element simulations have proven to be an efficient and cost-effective tool to investigate and optimize the mechanical performance of minimal invasive devices such as stents [2]. Biodegradable stents have however created new challenges in their design and optimization via finite element analysis because of their complex time-varying material behavior. To correctly simulate the mechanical behavior of biodegradable stents, a model should be developed that incorporates the effect of degradation upon all material characteristics. By combining existing constitutive material models based on continuum damage theory we were able to create such a virtual environment in which the transitional mechanical behavior of biodegradable stents can be investigated.

This content is only available via PDF.
You do not currently have access to this content.