The work is to unravel the wave transmission mechanism through modeling the water-filled polycarbonate shell subjected to blast loading. The shock wave propagation inside a shock tube and the interaction between the shock wave and the surrogate head were captured using the arbitrary Euler-Lagrangian coupling method. Results demonstrated a complex fluid field around the head. Pressure history profiles at anterior and posterior sites of the brain simulant exhibited the typical coup and countercoup pattern, which were attributed to the surface pressure wave (direct loading) and the structural wave in the skull simulant (indirect loading). This study could enhance our understanding on blast-induced traumatic brain injury, leading to novel injury mitigation strategies.
- Bioengineering Division
Modeling a Surrogate Head Response Under Blast Loading
Hua, Y, Akula, PK, & Gu, L. "Modeling a Surrogate Head Response Under Blast Loading." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1B: Extremity; Fluid Mechanics; Gait; Growth, Remodeling, and Repair; Heart Valves; Injury Biomechanics; Mechanotransduction and Sub-Cellular Biophysics; MultiScale Biotransport; Muscle, Tendon and Ligament; Musculoskeletal Devices; Multiscale Mechanics; Thermal Medicine; Ocular Biomechanics; Pediatric Hemodynamics; Pericellular Phenomena; Tissue Mechanics; Biotransport Design and Devices; Spine; Stent Device Hemodynamics; Vascular Solid Mechanics; Student Paper and Design Competitions. Sunriver, Oregon, USA. June 26–29, 2013. V01BT32A006. ASME. https://doi.org/10.1115/SBC2013-14388
Download citation file: