End-stage renal disease (ESRD) occurs as a result of any renal injury that chronically decreases renal excretory and regulatory function. ESRD patients are most commonly treated with hemodialysis (HD) to manage their renal failure while awaiting kidney transplant. Current practices for maintenance of HD vascular access consist of arteriovenous fistulas (AVFs) or grafts (AVGs), which are both fraught with problems that compromise the patency and use of these surgically created shunts. The major cause of shunt failure is thrombosis caused by occlusion of the outflow venous anastomosis and draining vein. Intimal hyperplasia (IH), which consists of the thickening of the innermost layer of the vessel wall, is the initial pathological event leading to shunt stenosis/thrombosis and has been associated with the presence of flow disturbances and abnormal wall shear stress (WSS) at the graft-vein anastomosis. Therefore, the improvement of HD via the enhancement of vascular access patency requires the development of a novel vascular access technology preserving the normal hemodynamics of the native vein.

This content is only available via PDF.
You do not currently have access to this content.