Myocardial infarctions (MI) afflict approximately 1.1 million individuals in the United States each year and exhibit an increasing prevalence worldwide due to the improvement of economic levels. Injection therapies for MI using biodegradable biomaterials with/without cells have been recognized to stabilize and preserve mechanical properties in the infarcted area in pre-clinical animal models. Recently, thermally responsive hydrogels, which can be injected from a syringe below 37 °C and then solidified at body temperature, are considered an attractive material for injection therapy.[1] The advantages of using an injectable hydrogel lie in its high moldability, capability of filling irregular shaped defects, and ability to be delivered to the in vivo environment by limited surgical invasion. However, it is still not very clear how the injection of thermosensitive hydrogel affects local tissue structure and mechanics. Thus, the goal of this study is to investigate possible alterations in myocardial structure and mechanical behavior after hydrogel injection using a well-controlled in vitro model.

This content is only available via PDF.
You do not currently have access to this content.