Bone continuously adapts its internal structure to accommodate the functional demands of its mechanical environment. It has been proposed that indirect strain-induced flow of interstitial fluid surrounding bone cells may be the primary mediator of mechanical stimuli in-vivo [1]. Due to the practical difficulties in ascertaining whether interstitial fluid flow is indeed the primary mediator of mechanical stimuli in the in vivo environment, much of the evidence supporting this theory has been established through in vitro investigations that have observed cellular activity in response to fluid flow imposed by perfusion chambers [2]. While such in vitro experiments have identified key mechanisms involved in the mechanotransduction process, the exact mechanical stimulus being imparted to cells within a monolayer is unknown [3]. Furthermoreit is not clear whether the mechanical stimulation is comparable between different experimental systems or, more importantly, is representative of physiological loading conditions experienced by bone cells in vivo.

This content is only available via PDF.
You do not currently have access to this content.