The cervical region of spinal column has been known as a frequent site of injuries. The major causes of injuries are vehicle accidents and sports. Clinical instability is known as one of the important topics in cervical spine research. It clarifies the relation between the mechanical dysfunction of the spine and the neurologic dysfunction and pain. From the clinical point of view, if the spinal segment exhibits abnormal large increase in rotational or translational displacements under physiological load, it is considered as unstable. There are different biomechanical models available to understand the underlying mechanisms of injury and dysfunction. Finite element (FE) models have been used as a strong tool to provide the basic insights into the workings of the cervical spine system. Furthermore, they have been clinically useful in the development of the definition of clinical instability and of diagnostic guidelines [1].
- Bioengineering Division
Effect of Asymmetry on Finite Element Model of Cervical Spine
Zafarparandeh, I, Erbulut, D, Lazoglu, I, & Ozer, F. "Effect of Asymmetry on Finite Element Model of Cervical Spine." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments. Sunriver, Oregon, USA. June 26–29, 2013. V01AT09A003. ASME. https://doi.org/10.1115/SBC2013-14158
Download citation file: