Congenital heart disease occurs in 8 out of every 1000 live births in the US and more than half of this population is associated with great artery lesions. Selective remodeling of the paired, bilaterally symmetric embryonic aortic arches (AA) is a crucial stage in vascular morphogenesis and has known association with biomechanical forces [1]. Fetal cardiac interventions are currently explored clinically as an alternative repair technique for congenital anomalies, in-utero [2]. Several computational fluid dynamics (CFD) studies have been performed focusing on subject specific embryonic cardiovascular anatomies [3–5]. These developments could benefit fetal interventions that are planned in-silico before execution. To demonstrate this possibility, we computed the hemodynamic variation and wall shear stress (WSS) patterns resulting from systematic in-silico AA ligation intervention performed on normal chick AA models viz. Hamburger Hamilton (HH) stage 18 and 24 (3 and 4 days, respectively). A unique methodology employing CFD-computed WSS for modeling short-term biological growth response on AA morphogenesis is also presented.
- Bioengineering Division
Computational Fluid Dynamics Analysis of Early Embryonic Aortic Arch-Ligation
Menon, PG, Kowalski, W, & Pekkan, K. "Computational Fluid Dynamics Analysis of Early Embryonic Aortic Arch-Ligation." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments. Sunriver, Oregon, USA. June 26–29, 2013. V01AT05A008. ASME. https://doi.org/10.1115/SBC2013-14470
Download citation file: