Mechanical circulatory support (MCS) devices, which include ventricular assist devices (VADs), offer an attractive solution to approximately 35,000 end-stage heart failure patients eligible for transplants, of which only 2,000–2,300 are performed annually [1]. These devices are employed to augment the function of the ailing left and/or right ventricle and serve as bridge-to-transplant or destination therapy, but are often accompanied by thrombotic complications. Pathologic flow patterns are characteristic of VADs and increase susceptibility to shear-induced platelet activation, which leads to thrombus formation [2]. Patients implanted with such devices are routinely prescribed antiplatelets to tackle these complications. Despite this concurrent therapy, thromboembolic incident rates of 0.9–13% are reported for the widely-implanted Thoratec HeartMate II and MicroMed DeBakey VADs [3, 4]. This has spurred the development of design optimization techniques to lower or eliminate the incidence of thrombosis and reduce the dependence on pharmacotherapy management.

This content is only available via PDF.
You do not currently have access to this content.