Atherosclerotic plaque rupture is the primary cause of cardiovascular clinical events such as heart attack and stroke. It is commonly believed that plaque rupture may be linked to critical mechanical conditions. Image-based computational models of vulnerable plaques have been introduced seeking critical mechanical indicators which may be used to identify potential sites of rupture [1–5]. A recent study by Tang et al. [4] using in vivo MRI-based 3D fluid-structure interaction (FSI) models for human carotid plaques with and without rupture reported that higher critical plaque wall stress (CPWS) values were associated with plaques with rupture, compared to those without rupture. However, existing computational plaque models are mostly for carotid plaques based on MRI data. Comparable similar studies for coronary plaques are lacking in the current literature. In this study, 3D computational multi-component models with FSI were constructed to identified 3D critical plaque wall stress, critical flow shear stress (CFSS) based on ex vivo MRI data of coronary plaques acquired from 10 patients. The patients were split into 2 groups: patients died in carotid artery disease (CAD, Group 1, 6 patients) and non CAD (Group 2, 4 patients). The possible link between CPWS and death in CAD was investigated by comparing the CPWS values from the two groups.
- Bioengineering Division
Sudden Death in Coronary Artery Disease are Associated With High 3D Critical Plaque Wall Stress: A 3D Multi-Patient FSI Study Based on Ex Vivo MRI of Coronary Plaques
Huang, X, Yang, C, Zheng, J, Bach, R, Muccigrosso, D, Woodard, PK, & Tang, D. "Sudden Death in Coronary Artery Disease are Associated With High 3D Critical Plaque Wall Stress: A 3D Multi-Patient FSI Study Based on Ex Vivo MRI of Coronary Plaques." Proceedings of the ASME 2013 Summer Bioengineering Conference. Volume 1A: Abdominal Aortic Aneurysms; Active and Reactive Soft Matter; Atherosclerosis; BioFluid Mechanics; Education; Biotransport Phenomena; Bone, Joint and Spine Mechanics; Brain Injury; Cardiac Mechanics; Cardiovascular Devices, Fluids and Imaging; Cartilage and Disc Mechanics; Cell and Tissue Engineering; Cerebral Aneurysms; Computational Biofluid Dynamics; Device Design, Human Dynamics, and Rehabilitation; Drug Delivery and Disease Treatment; Engineered Cellular Environments. Sunriver, Oregon, USA. June 26–29, 2013. V01AT04A017. ASME. https://doi.org/10.1115/SBC2013-14501
Download citation file: