Atherosclerotic plaque rupture is the primary cause of cardiovascular clinical events such as heart attack and stroke. It is commonly believed that plaque rupture may be linked to critical mechanical conditions. Image-based computational models of vulnerable plaques have been introduced seeking critical mechanical indicators which may be used to identify potential sites of rupture [1–5]. A recent study by Tang et al. [4] using in vivo MRI-based 3D fluid-structure interaction (FSI) models for human carotid plaques with and without rupture reported that higher critical plaque wall stress (CPWS) values were associated with plaques with rupture, compared to those without rupture. However, existing computational plaque models are mostly for carotid plaques based on MRI data. Comparable similar studies for coronary plaques are lacking in the current literature. In this study, 3D computational multi-component models with FSI were constructed to identified 3D critical plaque wall stress, critical flow shear stress (CFSS) based on ex vivo MRI data of coronary plaques acquired from 10 patients. The patients were split into 2 groups: patients died in carotid artery disease (CAD, Group 1, 6 patients) and non CAD (Group 2, 4 patients). The possible link between CPWS and death in CAD was investigated by comparing the CPWS values from the two groups.

This content is only available via PDF.
You do not currently have access to this content.