Splines are the standard tools in computer aided design for geometric representations and have been recently integrated into the finite element analysis of structures and fluids [1]. As the biomedical engineering is making progress, there is a need for an integrated tool for expanding the geometrical representation to include the microstructural details specific to soft tissue, e.g. fiber alignment, orientation, crimp and stiffness. In this work, a spline-based method is presented for aortic valves which facilitates mapping of the fiber structure from any aortic valve specimen to any other aortic valve geometry through a common parameter space. This techniques also has the ability to calculate mean tissue microstructure of representative population. Also strain and pre-strain from in-vivo state to the in-vitro state, where all the mechanical tests are done, are calculated for forward and inverse modeling of aortic valves.

This content is only available via PDF.
You do not currently have access to this content.