The current clinical management of abdominal aortic aneurysm (AAA) disease is based to a great extent on measuring the aneurysm maximum diameter to decide when timely intervention is required. Decades of clinical evidence show that aneurysm diameter is positively associated with the risk of rupture, but other parameters may also play a role in causing or predisposing the AAA to rupture. Geometric factors such as vessel tortuosity, intraluminal thrombus volume, and wall surface area are implicated in the differentiation of ruptured and unruptured AAAs. Biomechanical factors identified by means of computational modeling techniques, such as peak wall stress, have been positively correlated with rupture risk with a higher accuracy and sensitivity than maximum diameter alone. In the present work, we performed a controlled study targeted at evaluating the effect of uncertainty of the constitutive material model used for the vascular wall in the ensuing peak wall stress. Based on the outcome of this study, a second analysis was conducted based on the geometric characterization of surface curvature in two groups of aneurysm geometries, to discern which curvature metric can adequately discriminate ruptured from electively repaired AAA. The outcome of this work provides preliminary evidence on the importance of quantitative geometry characterization for AAA rupture risk assessment in the clinic.

This content is only available via PDF.
You do not currently have access to this content.