Aortic dissections, which split the aorta into a true lumen (TL) and a false lumen (FL), represent a serious medical condition, affecting otherwise healthy young people with an incidence between 5,000–10,000 cases per year in the United States and 3000 in Europe [1]. A recent study of the outcome of acute type III/ Stanford B aortic dissections (dissections confined to the descending aorta, B-AD) revealed that the long-term prognosis after hospital discharge of patients with B-AD is heterogeneous, with reported survival rates ranging from 56 to 92% at 1 year and from 48 to 82% at 5 years [2]. A partially thrombosed FL, results in a 2.7-fold increase in risk of death [3]. In a recent ex-vitro study, Tasi et al. investigated a chronic aortic dissection in three models [4]. The largest FL diastolic pressure was observed for the model simulating patients with partial false lumen thrombosis and occlusion of the distal entry tear. This study demonstrated that pressure differences between TL and FL are dependent on the geometry of the particular aortic dissection and the location and size of entry tears. A computational fluid dynamics (CFD) study on the effects of entry and exit tear coverage in B-AD based on a patient-derived geometry reported similar results [5]: In particular, occlusion of the exit tear caused increase FL pressure. Simulating thoracic endovascular repair (TEVAR) by occluding the entrance tear depressurized the FL. The capability of CFD to virtually simulate surgical interventions makes it an appealing method for use in pre-surgical planning. For general acceptance however, validation of the simulated results is needed. Catheter measurements of the pressures in the TL and FL are feasible but not very practicable as insertion of a catheter in the FL through the entry or exit tear bears unjustifiable risk to the patient. More recently, 7D phase contrast magnetic resonance imaging (pcMRI) methods (3 spatial directions, 3 velocity directions and time equal 7 dimensions) have been introduced that allow the acquisition of the 3D velocity field at several time points in the cardiac cycle, thereby providing information that can be directly compared with the velocity field simulated with CFD. Due to the large duration of the image acquisition, compromises in temporal and spatial resolution are made which need to be considered when performing such a comparison. Here we present a method based on interpolating the simulated velocity field onto a structured grid employing direct interpolation and spatial Fourier Fast Transformation (FFT) to replicate artifacts as they are present in the 7D pcMRI data. The interpolated velocity components are the then qualitatively compared using image correlation analysis.
Skip Nav Destination
ASME 2012 Summer Bioengineering Conference
June 20–23, 2012
Fajardo, Puerto Rico, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4480-9
PROCEEDINGS PAPER
Quantitative Comparison of 7D MRI Flow Measurements With CFD Results in a Type B Aortic Dissection Available to Purchase
Christof Karmonik,
Christof Karmonik
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Search for other works by this author on:
Rachel E. Clough,
Rachel E. Clough
King’s College London, London, UK
Search for other works by this author on:
Alan B. Lumsden,
Alan B. Lumsden
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Search for other works by this author on:
Peter Taylor,
Peter Taylor
King’s College London, London, UK
Search for other works by this author on:
Jean Bismuth
Jean Bismuth
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Search for other works by this author on:
Christof Karmonik
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Rachel E. Clough
King’s College London, London, UK
Alan B. Lumsden
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Peter Taylor
King’s College London, London, UK
Jean Bismuth
The Methodist DeBakey Heart & Vascular Center, Houston, TX
Paper No:
SBC2012-80077, pp. 955-956; 2 pages
Published Online:
July 19, 2013
Citation
Karmonik, C, Clough, RE, Lumsden, AB, Taylor, P, & Bismuth, J. "Quantitative Comparison of 7D MRI Flow Measurements With CFD Results in a Type B Aortic Dissection." Proceedings of the ASME 2012 Summer Bioengineering Conference. ASME 2012 Summer Bioengineering Conference, Parts A and B. Fajardo, Puerto Rico, USA. June 20–23, 2012. pp. 955-956. ASME. https://doi.org/10.1115/SBC2012-80077
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
In Vitro Quantification of Time Dependent Thrombus Size Using Magnetic Resonance Imaging and Computational Simulations of Thrombus Surface Shear Stresses
J Biomech Eng (July,2014)
A Primary Computational Fluid Dynamics Study of Pre- and Post-TEVAR With Intentional Left Subclavian Artery Coverage in a Type B Aortic Dissection
J Biomech Eng (November,2019)
Neonatal Aortic Arch Hemodynamics and Perfusion During Cardiopulmonary Bypass
J Biomech Eng (December,2008)
Related Chapters
Introduction and scope
Impedimetric Biosensors for Medical Applications: Current Progress and Challenges
Concept Development
Effective Innovation: The Development of Winning Technologies
Introduction and Scope
High Frequency Piezo-Composite Micromachined Ultrasound Transducer Array Technology for Biomedical Imaging