Human occupant responses in motor vehicle collisions (MVCs) are commonly predicted and evaluated in a laboratory using surrogates including human volunteers, anthropomorphic test devices (ATDs), and post mortem human surrogates (PMHSs) [1]. The ultimate goal of these surrogates is to demonstrate a similar response to humans in MVCs that can be used to evaluate human tolerance and enhance vehicle design and safety. The distinguishing attribute of human volunteers that non-human surrogates do not currently possess is the combination of identical human anthropometry, anatomy, and physiologic response of the target population, including resting muscle tone and active bracing capabilities. All human volunteer laboratory testing must be performed at sub-injurious levels due to ethical constraints, while non-human surrogates can be used to examine injurious or traumatic events. Given the capabilities and shortcomings of each surrogate in automobile safety research, performing matched tests with these surrogates can aid in the understanding of the biomechanical response of humans in an impact environment, leading to improvements in ATD design and increased efficacy of safety devices. Therefore, the purpose of this study was to investigate volunteer, ATD, and PMHS occupant kinematic responses in matched low-speed frontal sled tests.

This content is only available via PDF.
You do not currently have access to this content.