Articular cartilage is a hydrated connective tissue consisting of a relatively small number of chondrocytes surrounded by a saturated extracellular matrix comprised mainly of type-II collagen fibrils and proteoglycans. As a deformable fluid saturated material, cartilage is most often modeled using biphasic or poroelastic theories [1,2]. The ultimate goal of this work is to evaluate biomechanical properties of native and tissue engineered cartilage under combined compression and shear. The purpose of this investigation was to determine stress and deformation fields in cartilage under compression and simple shear and relate these to measured results.

This content is only available via PDF.
You do not currently have access to this content.