Pulse wave velocity (PWV) is the propagation speed of pressure and flow waves in the arterial system induced by the contracting left ventricle. PWV is a measure of arterial stiffness, and has been shown to predict cardiovascular events. In a clinical setting, PWV is usually associated with carotid-femoral PWV, reflecting the propagation speed over the aorta. It is, however, also possible to assess local PWV at a given measuring location, which reflects the stiffness of the artery under investigation at that particular location. When locally assessing PWV, single-location techniques are commonly used, which rely on the fact that in uniform elastic tubes, the relationship between a change in pressure (dP) and velocity (dU) is constant in the absence of wave reflections. As such, when plotting the pressure P as a function of the velocity U in an artery, a PU-loop is obtained, where reflection-free instants emerge as a straight line (typically during early systole), with a slope given by ρPWV (ρ = blood density). The original method relied on pressure and velocity data (PU-method), but alternative methods have been introduced based on cross-sectional area (A) and flow (Q) (QA-method), or diameter (D) and velocity (U) (ln(D)U-method).

This content is only available via PDF.
You do not currently have access to this content.