Osteoporosis is a debilitating disease characterized as decreased bone mass and structural deterioration of bone tissue. Osteoporotic bone tissue turns itself into altered structure, which leads to weaker bones that are more susceptible for fractures. While often happening in elderly, long-term bed-rest patients, e.g. spinal cord injury, and astronauts who participate in long-duration spaceflights, osteoporosis has been considered as a major public health thread and causes great medical cost impacts to the society. Mechanobiology and novel stimulation on regulating bone health have long been recognized. Loading induced bone fluid flow, as a critical mechanotransductive promoter, has been demonstrated to regulate cellular signaling, osteogenesis, and bone adaptation [4]. As one of the factors that mediate bone fluid flow, intromedullary pressure (ImP) creates a pressure gradient that further influence the magnitude of mechanotransductory signals [5]. As for a potential translational development of ImP, our group has recently introduced a novel, non-invasive dynamic hydraulic stimulation (DHS) on bone structural enhancement. Its promising effects on inhibition of disuse bone loss has been shown with 2 Hz loading through a 4-week hindlimb suspension rat study followed by microCT analysis. At the cellular level, mesenchymal stem cells (MSCs) are defined by their self-renewal ability and that to potentially differentiate into the cells that form tissues such as bone [1]. To further elucidate the cellular effects of DHS and its potential mechanism on bone quality enhancement, the objective of this study was to measure MSC quantification in response to the in vivo mechanical signals driven by DHS.

This content is only available via PDF.
You do not currently have access to this content.