Studies on blast neurotrauma have focused on investigating the effects of exposure to free-field blast representing the simplest form of blast threat scenario without considering any reflecting surfaces. However, in reality personnel are often located within enclosures or nearby reflecting walls causing a complex blast environment, that is, involving shock reflections and/or compound waves from different directions. In fact, when a blast wave interacts with nearby structures, reflected shock waves are generated and complex three-dimensional shock waves are formed. Complex shock wave overpressure-time traces are significantly different from free-field profiles because reflections can cause super-positioning of shock waves resulting in increased pressure magnitudes and multiple pressure peaks. Very importantly, the shocks arrive from different directions which would invoke a different biomechanical response than a one-dimensional exposure. It has been reported that in complex wave environments, the extent of the injuries becomes a function of the location related to the surrounding structures rather than a function of the distance from the center of the explosion, as it is for free-field conditions (Yelverton et al. 1993; Mayorga 1997; Stuhmiller 1997). Furthermore, the resulting injuries when the individual is in confined spaces are noted to be more severe (Yelverton et al. 1993; Leibovici et al. 1996). The purpose of this study was to design a complex wave testing system and perform a preliminary investigation of the intracranial pressure (ICP) response of rats exposed to a complex blast wave environment. Furthermore, we explored the effects of head orientation in the same environment.

This content is only available via PDF.
You do not currently have access to this content.