Single Ventricle Heart Defects (SVHD) are present in 2 per 1000 live births in the US. SVHD are characterized by cyanotic mixing between the de-oxygenated blood from the systemic circulation return and the oxygenated blood from the pulmonary arteries. Palliative surgical repairs (Fontan procedure) are performed to bypass the right ventricle in these patients. In current practice, the surgical interventions commonly result in the total cavopulmonary connection (TCPC). In this configuration the systemic venous returns (inferior vena cava, IVC, and superior vena cava, SVC) are directly routed to the right and left pulmonary arteries (RPA and LPA), bypassing the right heart. The resulting anatomy has complex and unsteady hemodynamics characterized by flow mixing and flow separation. Pulsation of the inlet venous flow during a cardiac cycle results in complex and unsteady flow patterns in the TCPC. Although various degrees of pulsatility have been observed in vivo, non-pulsatile (time-averaged) flow boundary conditions have traditionally been assumed in modeling TCPC hemodynamics, and only recently have pulsatile conditions been incorporated without completely characterizing their effect or importance. In this study, 3D numerical simulations were performed to predict TCPC hemodynamics with both pulsatile and non-pulsatile boundary conditions and to investigate the accuracy of applying non-pulsatile boundary conditions. Flow structures, energy dissipation rate and pressure drop were compared under rest and estimated exercise conditions. The results show that TCPC hemodynamics can be strongly influenced by the presence of pulsatile flow. However, there exists a minimum pulsatility threshold, identified by defining a weighted pulsatility index (wPI), above which the influence is significant.

This content is only available via PDF.
You do not currently have access to this content.