Mesenchymal stem cells (MSCs) are an attractive cell type for cartilage tissue engineering in that they can undergo chondrogenesis in a variety of 3D contexts [1]. Focused efforts in MSC-based cartilage tissue engineering have recently culminated in the formation of biologic materials possessing biochemical and functional mechanical properties that match that of the native tissue [2]. These approaches generally involve the continuous or intermittent application of pro-chondrogenic growth factors during in vitro culture. For example, in one recent study, we showed robust construct maturation in MSC-seeded hyaluronic acid (HA) hydrogels transiently exposed to high levels of TGF-β3 [3]. Despite the promise of this approach, MSCs are a multipotent cell type and retain a predilection towards hypertrophic phenotypic conversion (i.e., bone formation) when removed from a pro-chondrogenic environment (e.g., in vivo implantation). Indeed, even in a chondrogenic environment, many MSC-based cultures express pre-hypertrophic markers, including type X collagen, MMP13, and alkaline phosphatase [4]. To address this issue, recent studies have investigated co-culture of human articular chondrocytes and MSCs in both pellet and hydrogel environments. Chondrocytes appear to enhance the initial efficiency of MSC chondrogenic conversion, as well as limit hypertrophic changes in some instances (potentially via secretion of PTHrP and/or other factors) [5–7]. While these findings are intriguing, articular cartilage has a unique depth-dependent morphology including zonal differences in chondrocyte identity. Ng et al. showed that zonal chondrocytes seeded in a bi-layered agarose hydrogel construct can recreate depth-dependent cellular and mechanical heterogeneity, suggesting that these identities are retained with transfer to 3D culture systems [8]. Further, Cheng et al. showed that differences in matrix accumulation and hypertrophy in zonal chondrocytes was controlled by bone morphogenic protein [9]. To determine whether differences in zonal chondrocyte identity influences MSC fate decisions, we evaluated functional properties and phenotypic stability in photocrosslinked hyaluronic acid (HA) hydrogels using distinct, zonal chondrocyte cell fractions co-cultured with bone marrow derived MSCs.
Skip Nav Destination
ASME 2012 Summer Bioengineering Conference
June 20–23, 2012
Fajardo, Puerto Rico, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4480-9
PROCEEDINGS PAPER
Influence of Chondrocyte Zone on Co-Cultures With Mesenchymal Stem Cells in HA Hydrogels for Cartilage Tissue Engineering Available to Purchase
Minwook Kim,
Minwook Kim
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Jason A. Burdick,
Jason A. Burdick
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Robert L. Mauck
Robert L. Mauck
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Minwook Kim
University of Pennsylvania, Philadelphia, PA
Jason A. Burdick
University of Pennsylvania, Philadelphia, PA
Robert L. Mauck
University of Pennsylvania, Philadelphia, PA
Paper No:
SBC2012-80859, pp. 391-392; 2 pages
Published Online:
July 19, 2013
Citation
Kim, M, Burdick, JA, & Mauck, RL. "Influence of Chondrocyte Zone on Co-Cultures With Mesenchymal Stem Cells in HA Hydrogels for Cartilage Tissue Engineering." Proceedings of the ASME 2012 Summer Bioengineering Conference. ASME 2012 Summer Bioengineering Conference, Parts A and B. Fajardo, Puerto Rico, USA. June 20–23, 2012. pp. 391-392. ASME. https://doi.org/10.1115/SBC2012-80859
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Parametric Finite Element Analysis of Physical Stimuli Resulting From Mechanical Stimulation of Tissue Engineered Cartilage
J Biomech Eng (June,2009)
Mechanical Characterization of Differentiated Human Embryonic Stem Cells
J Biomech Eng (June,2009)
Related Chapters
Effects of Ultrasound Stimulation on Chondrocytes in Three-Dimensional Culture in Relation to the Production of Regenerative Cartilage Tissue
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Chapter 6 | Cell-Based Approaches for Bone Regeneration
Bone Graft Substitutes and Bone Regenerative Engineering