Effective use of progenitor cells in orthopaedic tissue engineering will require a thorough understanding of the mechanisms by which forces are transmitted and sensed, and how these change with differentiation. Nesprins are a family of structural proteins that partially localize to the nuclear envelope where they interact with both cytoskeletal and nucleoskeletal proteins [1]. At their C-terminus, nesprins interact through a KASH domain with proteins of the nuclear membrane, including SUN and Lamin A/C [1]. Multiple isoforms of the 4 nesprin genes are produced by alternative transcriptional initiation, translation and splicing. Specifically, nesprin 1 and nesprin 2 giant contain an N-terminal calponin homology domain (CH) that binds to and co-localizes with F-actin [2]. These nesprins are necessary for transmission of stress to the nucleus and are also differentially regulated with myogenesis, neurogenesis and adipogenesis [3,4]. We previously demonstrated that addition of TGF-3 induced nuclear Lamin A/C reorganization and nuclear stiffening in mesenchymal stem cells (MSCs), along with increased cell contractility and altered accumulation of smaller nesprin isoforms [5,6]. This study sought to determine the importance of contractility in transmission of force to the nucleus and the effect of dynamic loading on the expression of the giant nesprin isoforms.

This content is only available via PDF.
You do not currently have access to this content.