The avascular nature of cartilage and the harsh joint loading environment lead to a poor intrinsic healing capacity after injury, motivating the development of cell-based therapies for repair. Synovium-derived stem cells (SDSCs) have the potential for differentiating down a chondrogenic lineage and are thought to aid in articular cartilage repair after damage in vivo1. In the present study, we adopt a two-pronged strategy for growing clinically relevant cartilage grafts. Firstly, we compare the potential of SDSCs versus chondrocytes for engineering functional constructs. Secondly, we investigate the effect of extracellular osmolarity on mechanical and biochemical properties of SDSCs and similarly passaged chondrocytes in 3D culture. This approach is motivated by the fact that the in situ osmotic environment of chondrocytes varies with proteoglycan content and tissue deformation, altering the regulation of chondrocyte activity through mechanotransduction pathways2. We test the hypothesis that application of a hypertonic, more physiologic osmotic environment (created by addition of NaCl and KCl) relative to hypotonic media (300 mOsm), during 3D culture of SDSCs or chondrocytes in agarose hydrogels, improves the biochemical composition and mechanical properties of engineered tissue constructs.

This content is only available via PDF.
You do not currently have access to this content.