Malignant tumors of the central nervous system are the third leading cause of cancer-related deaths in adolescents and adults between the ages of 15 and 34; in children, brain tumors are the leading cause of cancer death. Convection-enhanced delivery (CED) has emerged as a promising method for the transport of high concentrations of chemotherapeutic macromolecules to brain tumors. CED is a minimally-invasive surgical procedure wherein a stereotactically-guided small-caliber catheter is inserted into the brain parenchyma, to a tumor site, for low flowrate infusion of chemotherapy [1]. This direct-delivery method bypasses obstacles to systemic chemotherapy caused by the selective impermeability of the blood-brain barrier. Although preliminary studies were favorable, CED recently failed Phase III FDA trials because clinical goals for tumor regression were not met [2]. This was primarily attributed to insufficient diffuse delivery of the drug throughout tumor masses and their surrounding margins.

This content is only available via PDF.
You do not currently have access to this content.