Cardiovascular tissues have a prominent load-bearing function. Collagen fibers in the extracellular matrix provide strength to these tissues. In particular the content and organization of these fibers contribute to overall strength [1]. In case of changes in mechanical demand, collagen content and organization can be adapted, a process referred to as remodeling. Collagen is therefore a key factor when creating load-bearing tissues via tissue engineering (TE). In order to optimize TE constructs we want to control the collagen content and organization, by either mechanical conditioning of the construct [2] or modification of scaffold properties (degradation, structure) [3, 4]. In mechanically-induced remodeling via conditioning strategies in bioreactors, collagen and cells are generally seen as the key players [5]. Collagen is able to bear the load applied on a tissue; cells sense and react to this load [6, 7]. In cardiovascular TE myofibroblasts are the cells of main interest. Myofibroblasts are mechano-sensitive and mechanically inducible [1], and contribute to alterations in the overall collagen architecture. To be able to optimize and control the collagen architecture and remodeling, via mechanical conditioning or scaffolds, an understanding of underlying mechanisms is needed specifically. Our aim is to provide new tools to study remodeling phenomena. Therefore we developed a 3D in vitro model system to study collagen remodeling at the micro level in real-time. Here we apply the model to investigate remodeling in tissues engineered without a carrier material, or scaffold.
Skip Nav Destination
ASME 2012 Summer Bioengineering Conference
June 20–23, 2012
Fajardo, Puerto Rico, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-4480-9
PROCEEDINGS PAPER
New Tools for Understanding Extracellular Matrix Remodeling at the Micro-Level in Cardiovascular Tissue Engineering
Nicky de Jonge,
Nicky de Jonge
Eindhoven University of Technology, Eindhoven, The Netherlands
Search for other works by this author on:
Frank P. T. Baaijens,
Frank P. T. Baaijens
Eindhoven University of Technology, Eindhoven, The Netherlands
Search for other works by this author on:
Carlijn C. V. Bouten
Carlijn C. V. Bouten
Eindhoven University of Technology, Eindhoven, The Netherlands
Search for other works by this author on:
Nicky de Jonge
Eindhoven University of Technology, Eindhoven, The Netherlands
Frank P. T. Baaijens
Eindhoven University of Technology, Eindhoven, The Netherlands
Carlijn C. V. Bouten
Eindhoven University of Technology, Eindhoven, The Netherlands
Paper No:
SBC2012-80098, pp. 205-206; 2 pages
Published Online:
July 19, 2013
Citation
de Jonge, N, Baaijens, FPT, & Bouten, CCV. "New Tools for Understanding Extracellular Matrix Remodeling at the Micro-Level in Cardiovascular Tissue Engineering." Proceedings of the ASME 2012 Summer Bioengineering Conference. ASME 2012 Summer Bioengineering Conference, Parts A and B. Fajardo, Puerto Rico, USA. June 20–23, 2012. pp. 205-206. ASME. https://doi.org/10.1115/SBC2012-80098
Download citation file:
8
Views
Related Proceedings Papers
Related Articles
Design of an Ex Vivo Culture System to Investigate the Effects of Shear Stress on Cardiovascular Tissue
J Biomech Eng (June,2008)
Novel Technique for Online Characterization of Cartilaginous Tissue Properties
J Biomech Eng (September,2011)
The Periodical Shear Environment of a Cone-and-Plate Bioreactor
J. Fluids Eng (March,2006)
Related Chapters
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
mDFA Empirical Results
Modified Detrended Fluctuation Analysis (mDFA)