Numerical models are necessary to estimate forces through the knee joint during activities of daily living. However, the numerous muscles and soft tissues crossing the knee joint result in a computationally indeterminate problem. The recent availability of measured contact force data from telemeterized total knee replacements (TKRs) has given researchers the chance to validate models, but telemeterized TKRs represent only a few patients with a specific implant type. Computational models remain necessary to bridge the gap between the small instrumented patient population with a particular implant and larger patient populations executing various activities. Abstracted gait data from another lab tests the versatility of any model to accurately predict forces of TKR patients performing a variety of gaits with disparate implant types. In this study, we calculate and examine the differences between medial and lateral contact forces in level walking and medial thrust gait trials from a freely provided dataset1.

This content is only available via PDF.
You do not currently have access to this content.