Characterizing the type and extent of in vivo damage to total joint replacements (TJR) is important for improving the success of arthroplasty outcomes, modeling damage modalities, and validating simulator studies. A method for quantifying the damage present on Cobalt Chrome (CoCr) humeral heads was developed in our lab to fulfill a much-needed gap in clinical knowledge regarding total shoulder replacements as well as metallic bearing surfaces [1,2]. A lack of inter-observer consistency with regard to severity classifications from our initial protocol [1] prompted several modifications to the method, which are tested and described here in this study. Also, since sub-micron scale ultra-high molecular weight polyethylene (UHMWPE) wear debris is linked to osteolysis and implant loosening, additional analysis with high magnification 3D optical profilometry was performed on a subset of damage modes with a long-term goal of correlating surface damage with propensity for osteolysis in TJR [3,4].

This content is only available via PDF.
You do not currently have access to this content.