Pulmonary valve (PV) replacement surgery is a treatment option for patients with a congenitally defective pulmonary outflow track. While a tissue engineered approach offers many potential advantages, develop of such a valve involves a complex process of optimization. As an intermediate step, we have used a single leaflet replacement surgical model to further our understanding of the in-vivo remodeling process. A critical step is to determine the deformed shape of the replacement PV leaflet under transvalvular pressure. Key factors in this process are: the scaffold anisotropic mechanical properties, optimal thickness, and the exact initial leaflet shape. We have used electrospun poly (ester urethane) ureas (ES-PEUU) scaffolds since they exhibit mechanical properties very similar to the native PV. In this work we present a design framework of the optimal leaflet shape determination utilizing a single sheet of ES-PEUU for single leaflet replacement surgery via finite element (FE) simulation. The mechanical properties of ES-PEUU scaffold for leaflet replacement were obtained from biaxial in-plane tension experiments. Generalized Fung-type hyperelastic constitutive model [1] was implemented into a commercial FE software package to simulate the deformation of ES-PEUU scaffolds under pressure. By perturbing the initial shape of leaflet and simulating its quasi-static deformation under PV diastolic loading, the optimal shape of unloaded leaflet was determined by comparing the deformed shape of leaflet obtained from FE simulation of TEPV with the one from microCT scan of a native ovine PV. In-vitro test of PV after single leaflet replacement was also conducted to validate the developed method.

This content is only available via PDF.
You do not currently have access to this content.