Understanding cellular dynamics is fundamental to increasing the healing and regenerative capacity of biomedical scaffolds. The ability to investigate environmental cues and cell-cell interactions in vitro with successful translation to in vivo therapies will enhance many tissue engineering technologies. Understanding the dynamics of a cell in response to external mechanical stimuli can help achieve directed cellular migration by varying cellular environment geometries. Customized scaffolds can then be designed to achieve desired cellular migration rates, cell-cell interaction pathways, increased proliferation and directed cellular differentiation platforms to achieve tissue engineering specific goals. In this study, a unique fiber manufacturing platform known as STEP (Spinneret-based Tunable Engineered Parameters) is used to create and manipulate geometrical cues for cellular migration. The cell’s reaction to these geometric cues provides valuable insight into cellular behavior, which can be used to determine the optimal engineered microenvironment. We envision that studying cellular behavior on STEP enabled customized scaffolds will aid in the design and fabrication of accurate mechanistic environments for different cell types which can then be coupled with chemical cues to achieve desired results.

This content is only available via PDF.
You do not currently have access to this content.