Articular cartilage is the primary compressive load bearing soft tissue in diarthrodial joints. While the tissue can function remarkably well in a demanding environment over a lifetime of use, focal defects and other trauma can initiate progressive degeneration. Cartilage tissue engineering approaches have been developed with the goal of forming biologic replacement materials with functional mechanical properties [1]. While chondrocytes are a popular cell source for such approaches, and can produce constructs with near-native functional properties [2], mesenchymal stem cells (MSCs) derived from bone marrow have emerged as an attractive alternative cell type. MSCs are multi-potent and easy to expand, and so are available in a nearly unlimited supply, and in an autologous fashion. While MSCs can undergo functional chondrogenesis in a variety of 3D contexts [3], we are particularly interested in the translational capacity of hyaluronic acid (HA). Hydrogels formed from this natural constituent of the cartilage extracellular matrix provide a biologically relevant interface for encapsulated cells and gel properties are readily tunable [4, 5]. Indeed, using a methacrylated (and so photo-crosslinkable) HA macromer, we have optimized gel formation and functional matrix production by MSCs with variations in both macromer (1%, [5]) and MSC (∼60 million cells/mL, [6]) concentration, consistently producing cartilage-like constructs with near native compressive properties. Additionally, we have reported that transient exposure of TGF-β3 (for three weeks) to MSCs in agarose constructs at a high-density induced a stable chondrogenic phenotype, with functional properties at six weeks greater than continual exposure to this pro-chondrogenic factor [7]. Transient exposure presents an interesting paradigm with clinical relevance, in vivo defect filling will require robust maturation of the engineered tissue driven by TGF-β3 delivered from the material itself in a controlled and sustained fashion. The purpose of this study was to determine the minimal TGF-β3 dosage and duration of exposure required to promote the most robust chondrogenesis and functional maturation of MSCs in this HA hydrogel system.
Skip Nav Destination
ASME 2011 Summer Bioengineering Conference
June 22–25, 2011
Farmington, Pennsylvania, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-5458-7
PROCEEDINGS PAPER
Transient Exposure to TGF-β3 Improves the Functional Properties of MSC-Seeded Photocrosslinked Hyaluronic Acid Hydrogels Available to Purchase
Minwook Kim,
Minwook Kim
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Isaac E. Erickson,
Isaac E. Erickson
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Jason A. Burdick,
Jason A. Burdick
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Robert L. Mauck
Robert L. Mauck
University of Pennsylvania, Philadelphia, PA
Search for other works by this author on:
Minwook Kim
University of Pennsylvania, Philadelphia, PA
Isaac E. Erickson
University of Pennsylvania, Philadelphia, PA
Jason A. Burdick
University of Pennsylvania, Philadelphia, PA
Robert L. Mauck
University of Pennsylvania, Philadelphia, PA
Paper No:
SBC2011-53906, pp. 895-896; 2 pages
Published Online:
July 17, 2013
Citation
Kim, M, Erickson, IE, Burdick, JA, & Mauck, RL. "Transient Exposure to TGF-β3 Improves the Functional Properties of MSC-Seeded Photocrosslinked Hyaluronic Acid Hydrogels." Proceedings of the ASME 2011 Summer Bioengineering Conference. ASME 2011 Summer Bioengineering Conference, Parts A and B. Farmington, Pennsylvania, USA. June 22–25, 2011. pp. 895-896. ASME. https://doi.org/10.1115/SBC2011-53906
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
Mechanical Characterization of Differentiated Human Embryonic Stem Cells
J Biomech Eng (June,2009)
Related Chapters
Effects of Ultrasound Stimulation on Chondrocytes in Three-Dimensional Culture in Relation to the Production of Regenerative Cartilage Tissue
Biomedical Applications of Vibration and Acoustics in Therapy, Bioeffect and Modeling
Synthesis and Characterization of Carboxymethyl Chitosan Based Hybrid Biopolymer Scaffold
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2