Due to the limited availability of human cadaveric specimens, animal models are often utilized for in vitro studies of various spinal disorders and surgical techniques. Sheep spines have similar geometry, disc space, and lordosis as compared to humans [1,2]. Several studies have identified the geometrical similarities between the sheep and human spine; however these studies have been limited to quantifying the anatomic dimensions as opposed to the biomechanical responses [2–3]. Although anatomical similarities are important, biomechanical correspondence is imperative to understand the effects of disorders, surgical techniques, and implant designs. Some studies [3–5] have focused on experimental biomechanics of the sheep cervical functional spinal units (FSUs). Szotek and colleagues [1] studied the biomechanics of compression and impure flexion-extension for the C2-C7 intact sheep spine. However, to date, there is no comparison of the sheep spine using pure flexion-extension, lateral bending, or axial rotation moments for multilevel specimen. Therefore, the purpose of this study was to conduct in vitro testing of the intact C2-C7 sheep cervical spine.

This content is only available via PDF.
You do not currently have access to this content.