Micro-scale investigations of the flow and deformation of blood and its formed elements have been studied for many years. Early in vitro investigations in the rotational viscometers or small glass tubes revealed important rheological properties such as the reduced blood apparent viscosity, Fahraeus effect and Fahraeus-Lindqvist effect [1], exhibiting the nonhomogeneous property of blood in microcirculation. We have applied Mixture Theory, also known as Theory of Interacting Continua, to study and model this property of blood [2, 3]. This approach holds great promise for predicting the trafficking of RBCs in micro-scale flows (such as the depletion layer near the wall), andother unique hemorheological phenomena relevant to blood trauma. The blood is assumed to be composed of an RBC component modeled as a nonlinear fluid, suspended in plasma, modeled as a linearly viscous fluid.

This content is only available via PDF.
You do not currently have access to this content.