Atherosclerotic plaque rupture is believed to be associated with high critical stress exceeding plaque cap material strength. In vivo magnetic resonance image (MRI)-based computational models have been introduced to calculate critical plaque stress and assess plaque vulnerability [1–5]. However, accuracy of computational stress predictions is heavily dependent on the data used by the models. Patient-specific plaque material properties are desirable for accurate stress predictions but are not currently available. In this paper, non-invasive in vivo Cine and 3D multicontrast MRI data and modeling techniques were combined to obtain patient-specific plaque material properties to improve model prediction accuracies. A 2D human carotid plaque model was used to demonstrate impact of material stiffness on computational stress predictions.

This content is only available via PDF.
You do not currently have access to this content.