The first study as regard with the application of robotic technology to the field of joint biomechaics was reported more than 20 years ago1). Since then, a variety of studies have employed commercially available articulated manipulators for the joint biomechanical studies1–4). However, such articulated manipulators are generally poor at stiffness and precision although they were basically designed to achieve high speeds of motion while performing tasks in a large work space. To solve the problem, we have previously developed a robotic system consisting of a custom-made 6-degree of freedom (6-DOF) manipulator and a universal force-moment sensor (UFS)5). Referring to the robotic system, the present study was aimed to develop a novel robotic system of rigid body/structure that allows a high-rate displacement/force control of the knee using a velocity-impedance control.

This content is only available via PDF.
You do not currently have access to this content.