Abdominal aortic aneurysms (AAAs) remain a significant cause of death in the Western world with over 15,000 deaths per year in the US linked to AAA rupture. Recent research [1] has questioned the use of maximum diameter as a definitive risk parameter as it is now believed that alternative factors may be important in rupture-prediction. Wall stress was shown to be a better predictor than diameter of rupture [1], with biomechanics-based rupture indices [2,3] and asymmetry also reported to have potential clinical applicability [4]. However, the majority of numerical methods used to form these alternative rupture parameters are without rigorous experimental validation, and therefore may not be as accurate as believed. Validated experiments are required in order to convince the clinical community of the worth of numerical tools such as finite element analysis (FEA) in AAA risk-prediction. Strain gauges have been used in the past to determine the strain on an AAA [5], however, the photoelastic method has also proved to be a useful tool in AAA biomechanics [6]. This paper examines the approach using three medium-sized patient-specific AAA cases at realistic pressure loadings.

This content is only available via PDF.
You do not currently have access to this content.