In an effort to prevent rupture, patients with known AAA undergo periodic abdominal ultrasound or CT scan surveillance. When the aneurysm grows to a diameter of 5.0–5.5 cm or is shown to expand at a rate greater than 1 cm/yr, elective operative repair is undertaken. While this strategy certainly prevents a number of potentially catastrophic ruptures, AAA rupture can occur at sizes less than 5 cm. From a biomechanical standpoint, aneurysm rupture occurs when wall stress exceeds wall strength. By using non-invasive techniques, such as finite element analysis (FEA), wall stress can be estimated for patient specific AAA models, which can perhaps more carefully predict the rupture potential of a given aneurysm, regardless of size. FEA is a computational method that can be used to evaluate complicated structures such as aneurysms. To this end, it was reported earlier that AAA peak wall stress provides a better assessment of rupture risk than the commonly used maximum diameter criterion [1]. What has yet to be examined, however, is the relationship between wall stress and AAA geometry during aneurysm growth. Such finding has the potential for providing individualized predictions of AAA rupture potential during patient surveillance. The purpose of this study is to estimate peak wall stress for an AAA under surveillance and evaluate its potential correlation with geometric features characteristic of the aneurysm’s morphology.

This content is only available via PDF.
You do not currently have access to this content.