Electroporation has been traditionally used to enhance molecular transport into cells (e.g. gene therapy) and through tissues (e.g. skin) by creating reversible pores with short electrical pulses [1]. Increasing the parameters (electrical field, pulse duration and number) can induce irreversible damage to the cells and tissue. Recently, irreversible electroporation (IRE) has been investigated as a new tumor ablation method [2]. The advantages of the IRE include the simple and fast procedure (train of μs pulses), sharp demarcation between treated and untreated regions, destruction of tumor cells while preserving the connective tissue, and minimal effect of immune response on treatment efficacy [3]. The unique interaction of electrical field with heterogeneous structures prevents damage to nerves, blood vessels and ducts [4]. IRE has been claimed to produce negligible thermal injury and protein denaturation typical to thermal ablation [5]. However, how each electroporation parameter in IRE affects tumor destruction and the possibility of heating remains to be studied in tumors vivo.

This content is only available via PDF.
You do not currently have access to this content.