Cell migration is achieved by the dynamic feedback interactions between traction forces generated by the cell and exerted onto the underlying extracellular matrix (ECM), and intracellular mechano-chemical signaling pathways, e.g., Rho GTPase (RhoA, Rac1, and Cdc42) activities [1,2,3]. These components are differentially distributed within a cell, and thus the coordination between tractions and mechanotransduction (i.e, RhoA and Rac1 activities) must be implemented at a precise spatial and temporal order to achieve optimized, directed cell migration [4,5]. Recent studies have shown that focal adhesions at the leading edge exert strong tractions [6], and these traction sites are co-localized with focal adhesion sites [7]. Further, by using the fluorescence resonance energy transfer (FRET) technology coupled with genetically encoded biosensors, researchers reported that Rho GTPases, such as RhoA [8], Rac1 [9], and Cdc42 [10] are maximally activated at the leading edge, suggesting the leading edge of the cell as its common functional site for Rho GTPase activities. All these works, however, were done separately, and the relationship between tractions and mechanotransduction during cell migration has not been demonstrated directly because of the difficulty in simultaneously recording tractions and mechanotransduction in migrating cells, precluding direct comparison between these results. Furthermore, these studies have been conducted by monitoring cells on glass coverslips, the stiffness of which is ∼ 65 giga pascal (GPa), at least three to six order higher than the physiological range of ECM stiffness. Although it is increasingly accepted that ECM stiffness influences cell migration, it is not known exactly how physiologically relevant ECM stiffness (order of kPa range) affects the dynamics of RhoA and Rac1 activities. For a complete understanding of the mechanism of mechano-chemical signaling in the context of cell migration, the dynamics and interplay between biomechanical (e.g., tractions) and biochemical (e.g., Rho GTPase) activities should be visualized within the physiologically relevant range of ECM stiffness.
Skip Nav Destination
ASME 2011 Summer Bioengineering Conference
June 22–25, 2011
Farmington, Pennsylvania, USA
Conference Sponsors:
- Bioengineering Division
ISBN:
978-0-7918-5458-7
PROCEEDINGS PAPER
Engineering Tools for Studying Coordination Between Biochemical and Biomechanical Activities in Cell Migration
Sungsoo Na
Sungsoo Na
Indiana University-Purdue University Indianapolis, Indianapolis, IN
Search for other works by this author on:
Sungsoo Na
Indiana University-Purdue University Indianapolis, Indianapolis, IN
Paper No:
SBC2011-53709, pp. 325-326; 2 pages
Published Online:
July 17, 2013
Citation
Na, S. "Engineering Tools for Studying Coordination Between Biochemical and Biomechanical Activities in Cell Migration." Proceedings of the ASME 2011 Summer Bioengineering Conference. ASME 2011 Summer Bioengineering Conference, Parts A and B. Farmington, Pennsylvania, USA. June 22–25, 2011. pp. 325-326. ASME. https://doi.org/10.1115/SBC2011-53709
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics
J Biomech Eng (February,2016)
Bioactive Magnetoelastic Materials as Coatings for Implantable Biomaterials
J. Med. Devices (June,2009)
Modeling and Simulation of Traction Drive Dynamics and Control
J. Mech. Des (December,2001)
Related Chapters
Experimental results gained from the physiological response of GFP biosensors in scale-down conditions
GFP Whole Cell Microbial Biosensors: Scale-up and Scale-down Effects on Biopharmaceutical Processes
Insulating Properties of W-Doped Ga2O3 Films Grown on Si Substrate for Low-K Applications
International Conference on Advanced Computer Theory and Engineering, 4th (ICACTE 2011)
Anisotropic Stiffness
Fundamentals of Rotating Machinery Diagnostics