Many strategies have been proposed to enhance the healing capability of the anterior cruciate ligament (ACL). A novel treatment option, called enhanced primary repair, places a provisional matrix at the tear site to promote cell infiltration of the wound and aims to reestablish the structure-function relationship of the ACL [1]. This approach of guided tissue regeneration offers great potential benefits of retaining the complex native tissue matrix structure, innervation, and vascularization as compared with grafts. A major aspect of this procedure is enhancing ligament fibroblast infiltration into the matrix material and promoting matrix synthesis. We have previously demonstrated that applied electric fields (EFs) enhance knee ligament fibroblast migration, alignment, and collagen gene expressions on planar substrates [2]. In the current study, we developed a new system to simulate cell infiltration from the tissue to a provisional collagen matrix. An EF was applied across the construct to investigate its effects of on ACL fibroblast migration into the provisional matrix.

This content is only available via PDF.
You do not currently have access to this content.