Control of prosthetic limbs using myoelectric muscle potentials from the wearer’s residual limb enables direct control of artificial limb behavior. The typical approach entails the integration of surface electromyogram (sEMG) electrodes within the inner wall of the socket interface, located to target specific superficial muscles in the amputee’s residual limb. While myoelectric upper-limb control is commonplace in prosthetic practice, its use in lower-extremity devices has been slow to follow suit. Various research efforts have studied approaches to implementing myoelectric control of artificial leg behavior [1–4], but the need for myoelectric control in lower-limb prostheses has been limited by the lack of commercial prototypes with the capability of net power generation.

This content is only available via PDF.
You do not currently have access to this content.