Functional Magnetic Resonance Imaging (fMRI) promises to grant motor control researchers opportunities to more directly explore neuromotor system dynamics including the role of proprioception. The effects of vibration on proprioception have been well documented including changes in perceived muscle length and lengthening velocity and altered muscle spindle organ firing [1–4]. As such, the combination of vibration of the muscle-tendon with fMRI of the brain can be used to better understand how proprioceptive signals are managed in the brain. However, the strength of the magnetic environment of the fMRI does not easily allow for traditional vibration technologies, such as a DC motor with offset mass, to be used to create the necessary vibratory stimulus to perturb the proprioceptive system. Several researchers have nonetheless successfully designed and implemented various vibration devices to probe the brain in the fMRI environment [5–7].

This content is only available via PDF.
You do not currently have access to this content.